
An Introduction to PAXI

http://www.nyphp.org/content/presentations/paxi/[9/12/2009 6:53:16 PM]

An Introduction to PAXI

 next >

PHP Application XML Interface

Built to support a variety of web services (XML) and to be deployed across any number of
uniquely branded URLs

Objective was to keep the framework extremely light weight and portable across many
physical and virtual servers

Client requirements were flexible templates & dynamic paramaters

Personal requirements - no PEAR!

Obviously wanted to use PHP for both speed and flexibility and its inherent template engine
(see: Why PHP is a template engine?)

1 2 3 4 5 6 7 8 9 10 11 12 13 toc

http://www.nyphp.org/
http://pear.php.net/
http://www.nyphp.org/content/presentations/3templates/whynot/
http://www.nyphp.org/content/presentations/paxi/index.php?slide=0

Known Obstacles

http://www.nyphp.org/content/presentations/paxi/index.php?slide=1[9/12/2009 6:53:19 PM]

Known Obstacles

<
previous

 next >

Web service used SOAP with attachments

Web service didn't properly use SOAP protocol

No information, except SOAP Fault, could be attained from the SOAP body or header (ie,
couldn't continue process until XML document was parsed)

PHP-SOAP, nuSOAP, PEAR though capable of building SOAP attachments do not currently
support receiving/parsing SOAP with attachments

Transport had to support POST over SSL

cURL / PEAR complex implementation for POST over SSL

XML files could be between 50k and 1.5Megs

Needed XML values in an array to support dynamic templates (don't want to just transform
the XML, ie, XSLT)

At launch, framework needed to support 2k searches an hour - scaling to 10x that over three
months

One month development timeline!

1 2 3 4 5 6 7 8 9 10 11 12 13 toc

http://www.nyphp.org/
http://www.nyphp.org/content/presentations/paxi/index.php?slide=0
http://www.nyphp.org/content/presentations/paxi/index.php?slide=0

The Solution

http://www.nyphp.org/content/presentations/paxi/index.php?slide=2[9/12/2009 6:53:22 PM]

The Solution

<
previous

 next >

Use sockets to connect over SSL to SOAP server

Build custom SOAP client (pMime)

Use SimpleXML to parse XML into an array (allowing access to data across dynamic templates)

Decided not to use sessions to speed up development time

Used SOAP server's sessionID instead (since in most instances all user info is returned)

Allows for rapid scalability across multiple webservers

1 2 3 4 5 6 7 8 9 10 11 12 13 toc

http://www.nyphp.org/
http://www.nyphp.org/content/presentations/paxi/index.php?slide=0

The Framework

http://www.nyphp.org/content/presentations/paxi/index.php?slide=3[9/12/2009 6:53:24 PM]

The Framework

<
previous

 next >

PHP 4 frontend validates user input, does a fuzzy match for airport codes

PHP 4 frontend builds appropriate XML using buffers

PHP 4 passes XML and sessionID (if appropriate) to PHP5 CLI

PHP 5 CLI script (paxi.psh) communicates with PHP 4 Apache module via fast native UNIX
pipes

paxi.psh script determines request type and validates input

Using SSL sockets, paxi.psh makes a SOAP request to remote server

After validating the response and handling exceptions, parsed data is passed back into PHP 4
Apache module

1 2 3 4 5 6 7 8 9 10 11 12 13 toc

http://www.nyphp.org/
http://www.nyphp.org/content/presentations/paxi/index.php?slide=0

PHP and Javascript, perfect together

http://www.nyphp.org/content/presentations/paxi/index.php?slide=4[9/12/2009 6:53:26 PM]

PHP and Javascript, perfect together

<
previous

 next >

Dynamic JavaScript Tricks

City Name or Aiport Code:

This function is called when you click the Submit button. If your browser is capable of it, a new <script> element will be
appended to the element of the document, with the src attribute set to our airports.php script on the server.

function getAirports() {
 // call as popup for browsers that won't rescript on the fly
 if (window.name != 'airports' && nodynamicjs) {
 popupAirports();
 }
 else if (nodynamicjs) {
 //window.alert('submitting');
 document.getElementById('form1').submit();
 } else {
 // allow refresh by removing any previously appended script
 var aphead = document.getElementsByTagName('body').item(0);
 var apold = document.getElementById('scriptId');
 if (apold) aphead.removeChild(apold);

 // create DOM script element
 newscript = document.createElement('script');
 var apfullpath = "http://example.com/airports.php?";

 // (snippet) get query values from form and add to scripturl
 if (document.getElementById('destination1')) {
 var dest1 = document.getElementById('destination1').value;
 apfullpath = apfullpath + 'destination1=' + destination1 + '&';
 }
 // assign src attribute to our script element
 newscript.setAttribute("src", apfullpath);
 // assign other attributes
 newscript.setAttribute("type",'text/javascript');
 newscript.setAttribute("defer", 'false');
 newscript.setAttribute("id", 'dynscript');
 newscript.setAttribute("version", '0.4');

 // append it to the head... nice trick (thanks D Kushner, DC Krook, J Knight)
 void(aphead.appendChild(newscript)); }
 }

The main processor function

The following function takes a location query (like "St. Louis, MO") and a label (like "destination1"). It parses the query then
checks to see if there are any airports or cities that match.

If the the query is an airport code, TRUE is returned, indicating to the calling script that no choice needs to be made.

If choices are found, a custom HTML <select> menu is returned listing each of the choices for that label.

If nothing is found to match the query, an HTML message is returned requesting a different query.

// return (string) menu of Airports; or TRUE if valid Airport or City Code
function process($loc, $key) {
 // if $loc isn't already an airport...
 if (!isAirport($loc)) {
 // parse $loc for state/country names

http://www.nyphp.org/

PHP and Javascript, perfect together

http://www.nyphp.org/content/presentations/paxi/index.php?slide=4[9/12/2009 6:53:26 PM]

 $loc_States = getStates($loc);
 // look up possible matches
 $loc_Airports = array();
 $loc_Choices = getAirports($loc_States, $loc_Airports);

 // if there are choices, render select menus
 if (is_array($loc_Choices)) {
 $loc_menu = '<select class="dropdown"
 name="'.$key.'Select"
 onchange="document.getElementById(\''.$key.'\').value=this.value;" >
 <option value="">Please choose an airport...</option>';

 foreach ($loc_Choices AS $codearray) {
 $code = $codearray[0];
 $citystate = $codearray[1];
 $loc_menu .= '<option value="'.$code.'">'.htmlentities($citystate).'</option>';
 }
 $loc_menu .= '</select>*';
 }
 // or render message if no choices found
 else {
 $loc_menu = '<div class="error">Aiport or City not found, please try again.</div>';
 }
 // quote the html for delivery
 $loc_menu = addslashes($loc_menu);
 }
 else {
 // loc is an airport code, proceed
 $loc_menu = TRUE;
 }
 return $loc_menu;
}

Returning the Javascript

If all locations are valid airport codes, the following JavaScript is sent, which ensures that other form fields are valid, then
submits the form:

if (validateTripType(document.getElementById('form1'), $single)) {
 document.getElementById('form1').submit();
}

If not, we return JavaScript that renders the <select> menu of choices in the proper place on the from (destination1 in this
case):

document.getElementById('destination1').innerHTML = "$destination1_menu";

1 2 3 4 5 6 7 8 9 10 11 12 13 toc

http://www.nyphp.org/content/presentations/paxi/index.php?slide=0

The Basic Architecture

http://www.nyphp.org/content/presentations/paxi/index.php?slide=5[9/12/2009 6:53:28 PM]

The Basic Architecture

<
previous

 next >

PHP 4 frontend validates user input, does a fuzzy match for airport codes

PHP 4 frontend builds appropriate XML using buffers

<?php

// PHP builds XML
$requestxml = buildXML ($params);

// function with buffers to build XML
function buildXML ($params) {

ob_start();

print "<?xml version='1.0' encoding='iso-8859-1'?>";
?>
<nyphp xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance" xsi:noNamespaceSchemaLocation="http://www.nyphp.org/add\Member.xsd">
 <memberID><?=$params['id']?></memberID>
 <firstName><?=$params['firstName']?></firstName>
 <lastName><?=$params['lastName']?></lastName>
 <? foreach ($params['array'] as $array) { ?>
 <list_info>
 <firstEl><?=$array[0]?></firstEl>
 <secondEl><?=$array[1]?></secondEl>
 </list_info>
 <? } ?>
</nyphp>
<?

return ob_get_clean();

}
?>

PHP 4 passes XML and sessionID (if appropriate) to PHP5 CLI

PHP 5 CLI script (paxi.psh) communicates with PHP 4 Apache module via fast native UNIX
pipes

paxi.psh script determines request type and validates input

Using SSL sockets, paxi.psh makes a SOAP request to remote server

After validating the response and handling exceptions, parsed data is passed back into PHP 4
Apache module

1 2 3 4 5 6 7 8 9 10 11 12 13 toc

http://www.nyphp.org/
http://www.nyphp.org/content/presentations/paxi/index.php?slide=0

The Basic Architecture - cont

http://www.nyphp.org/content/presentations/paxi/index.php?slide=6[9/12/2009 6:53:32 PM]

The Basic Architecture - cont

<
previous

 next >

PHP 4 to PHP 5 Communication

PHP 4 validates form input from browser and generates SOAP packet using output
buffering

Using proc_open() and command line arguments, PHP 4 controls and maintains bi-
directional communication with paxi.psh

<?php

if(empty($sessionID))
 $soap = proc_open(IPAXI_ARPSH,$fds,$soappipes);
else
 $soap = proc_open(IPAXI_ARPSH."{$sessionID}",$fds,$soappipes);

 fwrite($soappipes [0],$requestxml);

?>

1 2 3 4 5 6 7 8 9 10 11 12 13 toc

http://www.nyphp.org/
http://www.nyphp.org/content/presentations/paxi/index.php?slide=0

The Basic Architecture - cont.

http://www.nyphp.org/content/presentations/paxi/index.php?slide=7[9/12/2009 6:53:34 PM]

The Basic Architecture - cont.

<
previous

 next >

PHP 5 Request XML Processing

The PHP 5 CLI script (paxi.psh) reads stdin via output buffering

Multipart MIME entities are created and wrapped around each other

Unique Boundary values are generated

Accurate Content-Length values are determined

Managing large amounts of XML quickly and efficiently was a goal; using output buffering
provided a fast and flexible method for doing this

SOAP Server Communication

Manual SSL socket communication using fsockopen(). Flexibility and performance were
key concerns

<?php

 $soapfp = fsockopen(SOAPD_URL,SOAPD_PORT,$errno,$errstr,CONNECT_TIMEOUT);

 ?>

Network and SOAP server health is chaotic and problematic

Detection of network/server errors required connection and communication timeouts
and retries for both request and response phases

PHP 5's stream API stabilized since PHP 4

1 2 3 4 5 6 7 8 9 10 11 12 13 toc

http://www.nyphp.org/
http://www.nyphp.org/content/presentations/paxi/index.php?slide=0

The Basic Architecture - cont.

http://www.nyphp.org/content/presentations/paxi/index.php?slide=8[9/12/2009 6:53:36 PM]

The Basic Architecture - cont.

<
previous

 next >

PHP 5 Response XML Processing

pMIME accepts a file descriptor (in this case a network socket from the SOAP server) and
determines the structure of the incoming MIME/SOAP packet in real-time

<?php

$responseparser = new pMIME;
$responseparser->Incoming($soapfp);

?>

pMIME is lightweight and fast, keeping only a single copy of the data. Structure is
retained by use of an array of integers

Particular MIME entities and header fields can be examined. SESSIONID was
important for transactional integrity

<?php

$responseparser->setHeaderPart(0);
$responseparser->setField('Set-Cookie',TRUE);
if($responseparser->isParameter('SESSIONID'))
 $REQUEST_SESSIONID = $responseparser->parseField('SESSIONID');
 else
 $REQUEST_SESSIONID = NULL;

?>

Extracted XML is passed to SimpleXML routines for XML parsing and manipulation

<?php

$xmlresponse_array = XMLResponseParser($responseparser->fetchPart(5);

?>

1 2 3 4 5 6 7 8 9 10 11 12 13 toc

http://www.nyphp.org/
http://www.nyphp.org/content/presentations/paxi/index.php?slide=0

The Basic Architecture - cont.

http://www.nyphp.org/content/presentations/paxi/index.php?slide=9[9/12/2009 6:53:39 PM]

The Basic Architecture - cont.

<
previous

 next >

PHP 5 to PHP 4 Communication

The XML response is often large and the array that is generated is equally large and
complex

The PHP 4 script expects a string representation of an array. Using serialize() and native
UNIX file descriptors make this an efficient operation

<?php

in paxi.psh: echo serialize($xmlresponse_array);

in PHP 4:
 ob_start();
 fpassthru($soappipes[1]);
 $response_array = unserialize(ob_get_clean());

?>

The presentation logic in PHP 4 now determines formatting and layout of the returned
data

If data appears invalid or corrupt, the user's original request is resubmitted to paxi.psh
from memory and the process starts again

1 2 3 4 5 6 7 8 9 10 11 12 13 toc

http://www.nyphp.org/
http://www.nyphp.org/content/presentations/paxi/index.php?slide=0

Why SimpleXML

http://www.nyphp.org/content/presentations/paxi/index.php?slide=10[9/12/2009 6:53:40 PM]

Why SimpleXML

<
previous

 next >

To be the first kid on my block using in production

Lower level to speed up parsing large file size

Built in XPATH

It's so easy, even I can do it

Note: since this presentation, it is rumoured that many bugs in SimpleXML have been fixed,
making many of the workarounds below unnecessary

<?xml version="1.0" encoding="UTF-8"?>
<nyphp>
 <currentVersion>2</currentVersion>
 <userID>NYPHP</userID>
 <memberShip>1256</memberShip>
 <state>New York</state>
 <members>
 <member>
 <memberID>001</memberID>
 <email>hans at nyphp dot org</email>
 <contactInfo>
 <address>
 <street>123 Street</street>
 <city>New York</city>
 <stateID>NY</stateID>
 <postalCode>10101</postalCode>
 <countryID>US</countryID>
 </address>
 <phone>212 867 5309</phone>
 <fax/>
 </contactInfo>
 </member>
 <member>
 <memberID>023</memberID>
 <email>harlan at nyphp dot org</email>
 <contactInfo>
 <address>
 <street>127 Street</street>
 <city>New York</city>
 <stateID>NY</stateID>
 <postalCode>10101</postalCode>
 <countryID>US</countryID>
 </address>
 <phone>212 666 HELL</phone>
 <fax/>
 </contactInfo>
 </member>
 <member>
 <memberID>066</memberID>
 <email>snyder at nyphp dot org</email>
 <contactInfo>
 <address>
 <street>185 Street</street>
 <city>New York</city>
 <stateID>NY</stateID>
 <postalCode>10101</postalCode>
 <countryID>US</countryID>
 </address>
 <phone>212 666 HELL</phone>

http://www.nyphp.org/

Why SimpleXML

http://www.nyphp.org/content/presentations/paxi/index.php?slide=10[9/12/2009 6:53:40 PM]

 <fax/>
 </contactInfo>
 </member>
 </members>
 <extraStuff>
 <URL>www.nyphp.org</URL>
 <meetingDate>Fourth Tuesday of each Month</meetingDate>
 <comments>Not the last Tuesday</comments>
 </extraStuff>
</nyphp>

Load a string or file into SimpleXML

Then you can act on the object using SimpleXML methods, looping through the nodes or using XPATH

In our case we want to rebuild the object into an array so we can normalize the data from the different XML
feeds, access it in a variety of ways and place certain values into DB

<?php

 /* create SimpleXML object */
 $xml = simplexml_load_string($responsexml);

 /* Find the name of the root node
 Would prefer to do this entirely in SimpleXML */
 $type = dom_import_simplexml($xml)->tagName;

 /* you can also do:

 foreach ($xml as $key=>$value) {
 $type = $key;
 }
 not fully tested */

 /* call the toArray method for this particular XML file (Parser_nyphp class) */
 if ($type == 'nyphp') $response_array = PARSER_nyphp::toArray($xml);

 /* simple parser - Adam Trachtenberg */
 class PARSER_ComplexType {

 protected $data = array();

 static public function toArray() {
 return array();
 }

 }

 /* parser for nyphp node - need to know schema */
 class PARSER_nyphp extends PARSER_ComplexType {

 static public function toArray($xml) {

 $data = array(); /**** protected $data ****/

 /* Need to test if a node exists.
 Two possible solutions:

 a) not tested - Adam? */
 if (count($xml->xpath(currentVersion)) > 0) {
 $data['currentVersion'] = (int) $xml->currentVersion;
 }

 /* b) we can only do this on a leaf node, will the above always work -
 what about with iterators (as below)??? */
 if ((string) $xml->currentVersion) !='') {
 $data['currentVersion'] = (int) $xml->currentVersion;
 }

Why SimpleXML

http://www.nyphp.org/content/presentations/paxi/index.php?slide=10[9/12/2009 6:53:40 PM]

 if ((string) $xml->userID) !='') {
 $data['userID'] = (string) $xml->userID;
 }

 .
 .
 .

 /* Must be a better way to do this???

 Right now if you cast a node that has children to a string
 it returns as an empty string, thus you need to test for the
 leaf node, which will return the value
 */
 if ((string) $xml->members->member->memberID !='') {

 foreach($xml->members as $member) {
 $data['members'][] = PARSER_member::toArray($member);
 }

 }

 .
 .
 .

 return $data;

 }

 }

 /* build out a class for each node */
 class PARSER_member extends PARSER_ComplexType {

 static public function toArray($xml) {

 $data = array();

 if ((string) $xml->memberID) !='') {
 $data['memberID'] = (int) $xml->memberID;
 }

 if ((string) $xml->email) !='') {
 $data['email'] = (string) $xml->email;
 }

 .
 .
 .

 /* same as above, need to test the leaf */
 if ((string) $xml->contactInfo->address->street !='') {

 foreach($xml->contactInfo->address as $address) {
 // here we alter the way the array is returned, leaving out the contactInfo node
 $data['address'] = PARSER_address::toArray($address);
 }

 }

 .
 .
 .

 return $data;

 }

 }

 /* build out a class for each node */
 class PARSER_address extends PARSER_ComplexType {

 static public function toArray($xml) {

 $data = array();

Why SimpleXML

http://www.nyphp.org/content/presentations/paxi/index.php?slide=10[9/12/2009 6:53:40 PM]

 .
 .
 .

 return $data;

 }

 }

?>

Some limitations exist, and some functionality needs to be added to SimpleXML

But if you know the Schema, it's fast and easy to build out classes to build any structure you need to work
with

You can also easily work directly with the SimpleXML object

1 2 3 4 5 6 7 8 9 10 11 12 13 toc

http://www.nyphp.org/content/presentations/paxi/index.php?slide=0

The Next Generation of PAXI

http://www.nyphp.org/content/presentations/paxi/index.php?slide=11[9/12/2009 6:53:43 PM]

The Next Generation of PAXI

<
previous

 next >

We use PHP sessions to maintain state, and a response table to tie remote responses to
sessions.

The remote request script is called with a key that it will use to save the remote
response

Waiting.php script looks for the returned response, refreshing every few seconds

If the response times out, the waiting script redisplays the current step in the process,
otherwise it uses the information in the response to display the next step.

Remote requests may now be called in advanced, and saved for later use by the session

1 2 3 4 5 6 7 8 9 10 11 12 13 toc

http://www.nyphp.org/
http://www.nyphp.org/content/presentations/paxi/index.php?slide=0

References

http://www.nyphp.org/content/presentations/paxi/index.php?slide=12[9/12/2009 6:53:45 PM]

References

<
previous

 next >

PHP/Javascript: www.webxpertz.net/faqs/jsfaq/jsserver.php

SimpleXML: www.php.net/simplexml

SOAP: www.w3.org/TR/2003/REC-soap12-part1-20030624

Presentation given by: Christopher Hendry (chendry at harlangroup dot org)

1 2 3 4 5 6 7 8 9 10 11 12 13 toc

http://www.nyphp.org/
http://www.webxpertz.net/faqs/jsfaq/jsserver.php
http://www.php.net/simplexml
http://www.w3.org/TR/2003/REC-soap12-part1-20030624/
mailto:contact
http://www.nyphp.org/content/presentations/paxi/index.php?slide=0

Table of Contents

http://www.nyphp.org/content/presentations/paxi/index.php?slide=13[9/12/2009 6:53:47 PM]

Table of Contents

<
previous

Slide: 1 - An Introduction to PAXI

Slide: 2 - Known Obstacles

Slide: 3 - The Solution

Slide: 4 - The Framework

Slide: 5 - PHP and Javascript, perfect together

Slide: 6 - The Basic Architecture

Slide: 7 - The Basic Architecture - cont

Slide: 8 - The Basic Architecture - cont.

Slide: 9 - The Basic Architecture - cont.

Slide: 10 - The Basic Architecture - cont.

Slide: 11 - Why SimpleXML

Slide: 12 - The Next Generation of PAXI

Slide: 13 - References

1 2 3 4 5 6 7 8 9 10 11 12 13 toc

http://www.nyphp.org/
http://www.nyphp.org/content/presentations/paxi/index.php?slide=0
http://www.nyphp.org/content/presentations/paxi/index.php?slide=0

	nyphp.org
	An Introduction to PAXI
	Known Obstacles
	The Solution
	The Framework
	PHP and Javascript, perfect together
	The Basic Architecture
	The Basic Architecture - cont
	The Basic Architecture - cont.
	The Basic Architecture - cont.
	The Basic Architecture - cont.
	Why SimpleXML
	The Next Generation of PAXI
	References
	Table of Contents

	BheGkvaW5kZXgucGhwP3NsaWRlPTQA:
	dloc:
	Submit:

