
Tools for Writing Better PHP Code: Version Control with Subversion

http://www.nyphp.org/content/presentations/svn/[9/12/2009 7:04:17 PM]

Tools for Writing Better PHP
Code
Version Control with
Subversion
Prepared by
Jeff Knight (jeff dot knight at nyphp.org) &
Andrew Yochum (andrew at plexpod.com)
for New York PHP

Why Version Control?

Developing with Others

On projects with more than one developer, version control prevents them from
overwriting each other's changes.

Almost Infinite Undo

A project in version control can be "rolled back" to any previous state.

Publishing

Most version control systems can also be used to publish and distribute the project to
a wider audience.

Why Subversion (as opposed to cvs)?

SVN is faster & in general, needs much less server memory

Versions entire directories and structure instead of just files

http://www.nyphp.org/

Tools for Writing Better PHP Code: Version Control with Subversion

http://www.nyphp.org/content/presentations/svn/[9/12/2009 7:04:17 PM]

Random metadata

Cheap copies

Works well weith binaries

Atomic transactions to the repo

CVS is based on RCS and inherits lots of legacy crap as a result

Popularly known as "cvs without the suck"

Installing Subversion
Subversion is built on a portability layer called APR (the Apache Portable Runtime
library). This means Subversion should work on any operating system that the Apache
httpd server runs on: Windows, Linux, all flavors of BSD, Mac OS X, Netware, and
others.

The easiest way to get Subversion is to download a binary package built for your
operating system. Subversion's website (http://subversion.tigris.org) often has these
packages available for download, posted by volunteers. The site usually contains
graphical installer packages for users of Microsoft operating systems. If you run a
Unix-like operating system, you can use your system's native package distribution
system (RPMs, DEBs, the ports tree, etc.) to get Subversion.

Alternately, you can build Subversion directly from source code. From the Subversion
website, download the latest source-code release. After unpacking it, follow the
instructions in the INSTALL file to build it. Note that a released source package contains
everything you need to build a command-line client capable of talking to a remote
repository (in particular, the apr, apr-util, and neon libraries). But optional portions of
Subversion have many other dependencies, such as Berkeley DB and possibly Apache
httpd. If you want to do a complete build, make sure you have all of the packages
documented in the INSTALL file.

Excellent Manual: http://svnbook.red-bean.com

The O'Reilly Media published book Version Control with Subversion written by Ben
Collins-Sussman, Brian W. Fitzpatrick, C. Michael Pilato is available for free on the
web in HTML and PDF formats.

Repository Storage: Berkeley DB vs. FSFS

http://subversion.tigris.org/
http://svnbook.red-bean.com/
http://www.oreilly.com/catalog/0596004486/
http://www.oreillynet.com/cs/catalog/view/au/1801
http://www.oreillynet.com/cs/catalog/view/au/1801
http://www.oreillynet.com/cs/catalog/view/au/1802
http://www.oreillynet.com/cs/catalog/view/au/1803

Tools for Writing Better PHP Code: Version Control with Subversion

http://www.nyphp.org/content/presentations/svn/[9/12/2009 7:04:17 PM]

Just to keep things from being too easy, Subversion has two methods it uses to store
its repositories. One type of repository stores everything in a Berkeley DB database;
the other kind stores data in ordinary flat files they refer to as FSFS. Originally, it
used the Berkeley DB method as the default, but has recently changed the default to
FSFS.

In my opinion, it is easier to install and run subversion if you forget about Berkeley
DB altogether. I also feel that it is easier to manage permissions.

Subversion Repository Data-Store Comparison

Feature Berkeley DB FSFS

Sensitivity to
interruptions

very; crashes and permission problems
can leave the database "wedged",
requiring journaled recovery procedures.

quite insensitive.

Usable from
a read-only
mount

no yes

Platform-
independent
storage

no yes

Usable over
network
filesystems

no yes

Repository
size slightly larger slightly smaller

Scalability:
number of
revision
trees

database; no problems
some older native filesystems
don't scale well with thousands
of entries in a single directory.

Scalability:
directories
with many
files

slower faster

Speed:
checking out
latest code

faster slower

Speed: large
commits

slower, but work is spread throughout
commit

faster, but finalization delay
may cause client timeouts

Group
permissions
handling

sensitive to user umask problems; best
if accessed by only one user. works around umask problems

Code
maturity in use since 2001 in use since 2004

Repository Access Methods

Architecture Overview

At any given time, these processes may require read and write access to your
repository:

Tools for Writing Better PHP Code: Version Control with Subversion

http://www.nyphp.org/content/presentations/svn/[9/12/2009 7:04:17 PM]

regular system users using a Subversion client (as themselves) to access the
repository directly via file:/// URLs;

regular system users connecting to SSH-spawned private svnserve processes
(running as themselves) which access the repository;

an svnserve process—either a daemon or one launched by inetd—running as a
particular fixed user;

an Apache httpd process, running as a particular fixed user.

svnserve

The svnserve program is a lightweight server, capable of speaking to clients over
TCP/IP using a custom, stateful protocol. Clients contact an svnserve server by using
URLs that begin with the svn:// or svn+ssh:// schema.

Apache 2

Via a custom module, httpd makes Subversion repositories available to clients via the

Tools for Writing Better PHP Code: Version Control with Subversion

http://www.nyphp.org/content/presentations/svn/[9/12/2009 7:04:17 PM]

WebDAV/DeltaV protocol. The result is a standardized, robust system that is
conveniently packaged as part of the Apache 2.0 software, is supported by numerous
operating systems and third-party products, and doesn't require network
administrators to open up yet another custom port. While an Apache-Subversion
server has more features than svnserve, it's also a bit more difficult to set up.

That is Apache 2, by the way. Not 1. If you are one of the many people still running 1
and cannot chanage, consider runnning a copy of 2 as well on a different ports for
your Subvresion & WebDAV needs.

Creating & Checking Out a Repository

svn import [PATH] URL

Recursively commit a copy of PATH to URL. If PATH is omitted "." is assumed. Parent
directories are created in the repository as necessary.

Developer Foo creates a repository from the files shape.php, square.php, junk.php.

air:~/start foo$ ls
demo
air:~/start foo$ ls demo
junk.php shape.php square.php
air:~/start foo$ cat demo/junk.php
<?php
class Junk {
 public $junk ;
}

air:~/start foo$ cat demo/shape.php
<?php
class Shape {
 public $height ;
 public $width ;
}

air:~/start foo$ cat demo/square.php
<?php
class Square extends Shape {

}

air:~/start foo$ svn import http://svn.server.com/projects -m "Import"
Adding demo
Adding demo/shape.php
Adding demo/square.php
Adding demo/junk.php

Committed revision 1.

After importing data, note that the original tree is not under version control. To start

Tools for Writing Better PHP Code: Version Control with Subversion

http://www.nyphp.org/content/presentations/svn/[9/12/2009 7:04:17 PM]

working, you still need to svn checkout a fresh working copy of the tree.

svn checkout URL[@REV]... [PATH]

Check out a working copy from a repository. If PATH is omitted, the basename of the
URL will be used as the destination. If multiple URLs are given each will be checked
out into a subdirectory of PATH, with the name of the subdirectory being the
basename of the URL.

Developer Foo checks out and shows files pulled down via a gui. There is
nothing special about this gui in particular, and serveral are available for each
OS. We are just demonstrating that there are other methods to access the
repository other than via the command line.

Developer Bar checks out and shows files pulled down via command line.

air:~ bar$ cd Documents/
air:~ bar$ ls

air:~ bar$ svn checkout http://svn.server.com/repo/demo
A demo/shape.php
A demo/square.php
A demo/junk.php
Checked out revision 1.
air:~ bar$ ls
demo
air:~ bar$ cd demo; ls
junk.php shape.php square.php

Changes & Updating

svn commit [PATH...]

Send changes from your working copy to the repository. If you do not supply a log
message with your commit by using either the --file or --message switch, svn will
launch your editor for you to compose a commit message.

Developer Bar adds area() method to square.php and commmits changes.

Tools for Writing Better PHP Code: Version Control with Subversion

http://www.nyphp.org/content/presentations/svn/[9/12/2009 7:04:17 PM]

air:~/demo bar$ vi square.php
air:~/demo bar$ cat square.php
<?php
class Square extends Shape {
 function area() {
 return $this->height * $this->width; }
}

air:~/demo bar$ svn commit -m "Added area() method to Square Class"
Sending square.php
Transmitting file data .
Committed revision 2.

svn update [PATH...]

Brings changes from the repository into your working copy. If no revision given, it
brings your working copy up-to-date with the HEAD revision. Otherwise, it
synchronizes the working copy to the revision given by the --revision switch.

Developer Foo updates & shows changed file.

air:~/start/trunk foo$ cd ~/demo/
air:~/demo foo$ ls
junk.php shape.php square.php
air:~/demo foo$ cat square.php
<?php
class Square extends Shape {

}

air:~/demo foo$ svn update
U square.php
Updated to revision 3.
air:~/demo foo$ cat square.php
<?php
class Square extends Shape {
 function area() {
 return $this->height * $this->width;
 }

}

Adding & Moving

svn add PATH...

Add files, directories, or symbolic links to your working copy and schedule them for
addition to the repository. They will be uploaded and added to the repository on

Tools for Writing Better PHP Code: Version Control with Subversion

http://www.nyphp.org/content/presentations/svn/[9/12/2009 7:04:17 PM]

your next commit. If you add something and change your mind before committing,
you can unschedule the addition using svn revert.

Developer Foo adds circle.php and commits.

air:~/demo foo$ vi circle.php
air:~/demo foo$ ls
junk.php shape.php square.php
air:~/demo foo$ vi circle.php
air:~/demo foo$ cat circle.php
<?php
class Circle extends Shape {
 public $diameter ;

 function radius() {
 return $this->diameter / 2 ;
 }
}

air:~/demo foo$ ls
circle.php junk.php shape.php square.php
air:~/demo foo$ svn add circle.php
A circle.php
air:~/demo foo$ svn commit -m "Added a Circle Class"
Adding circle.php
Transmitting file data .
Committed revision 3.

svn delete PATH...
svn delete URL...

Items specified by PATH are scheduled for deletion upon the next commit. Files (and
directories that have not been committed) are immediately removed from the
working copy. The command will not remove any unversioned or modified items;
use the --force switch to override this behavior.

Items specified by URL are deleted from the repository via an immediate commit.
Multiple URLs are committed atomically.

Alternate Names:

svn del

svn remove

svn rm

Developer Foo removes junk.php and commits.

air:~/demo foo$ ls
circle.php junk.php shape.php square.php
air:~/demo foo$ svn delete junk.php
D junk.php
air:~/demo foo$ ls
circle.php shape.php square.php
air:~/demo foo$ svn commit -m "Junk was thrown away"
Deleting junk.php

Tools for Writing Better PHP Code: Version Control with Subversion

http://www.nyphp.org/content/presentations/svn/[9/12/2009 7:04:17 PM]

Committed revision 4.

svn move SRC DST

This command moves a file or directory in your working copy or in the repository

Alternate Names:

svn mv

svn rename

svn ren

This command is equivalent to an svn copy followed by svn delete.

Developer Foo renames filename to rectangle.php, changes Square class to Rectangle
& commits.

air:~/demo foo$ svn move square.php rectangle.php
A rectangle.php
D square.php
air:~/demo foo$ ls
circle.php rectangle.php shape.php
air:~/demo foo$ vi rectangle.php
air:~/demo foo$ cat rectangle.php
<?php
class Rectangle extends Shape {
 function area() {
 return $this->height * $this->width;
 }

}

air:~/demo foo$ svn commit -m "Moved Square class to Rectangle"
Adding rectangle.php
Deleting square.php
Transmitting file data .
Committed revision 5.

Works for directories as well as files.

Developer Bar updates, then moves all files to a new, top level /lib folder & does
not commit.

air:~/demo bar$ svn update
D square.php
A circle.php
A rectangle.php
D junk.php
Updated to revision 5.
air:~/demo bar$ ls
circle.php rectangle.php shape.php
air:~/demo bar$ mkdir lib
air:~/demo bar$ svn add lib
A lib
air:~/demo bar$ svn move circle.php lib

Tools for Writing Better PHP Code: Version Control with Subversion

http://www.nyphp.org/content/presentations/svn/[9/12/2009 7:04:17 PM]

A lib/circle.php
D circle.php
air:~/demo bar$ svn move rectangle.php lib
A lib/rectangle.php
D rectangle.php
air:~/demo bar$ svn move shape.php lib
A lib/shape.php
D shape.php
air:~/demo bar$ ls
lib
air:~/demo bar$ ls lib
circle.php rectangle.php shape.php

Logs

svn status [PATH...]

Print the status of working copy files and directories. With no arguments, it prints
only locally modified items (no repository access). With --show-updates, add working
revision and server out-of-date information. With --verbose, print full revision
information on every item.

Developer Bar uses status to view recent changes.

air:~/demo bar$ svn status
D shape.php
A lib
A + lib/shape.php
A + lib/circle.php
A + lib/rectangle.php
D circle.php
D rectangle.php

svn log [PATH]

The default target is the path of your current directory. If no arguments are
supplied, svn log shows the log messages for all files and directories inside of (and
including) the current working directory of your working copy. You can refine the
results by specifying a path, one or more revisions, or any combination of the two.

Developer Bar uses log to view recent comments, updates and shows changed file.

air:~/demo bar$ svn log

Tools for Writing Better PHP Code: Version Control with Subversion

http://www.nyphp.org/content/presentations/svn/[9/12/2009 7:04:17 PM]

air:~/demo bar$ svn log
--
r6 | bar | 2005-08-23 02:00:05 -0400 (Tue, 23 Aug 2005) | 1 line

moved all to /lib
--
r5 | foo | 2005-08-23 01:54:16 -0400 (Tue, 23 Aug 2005) | 1 line

Moved Square class to Rectangle
--
r4 | foo | 2005-08-23 01:52:34 -0400 (Tue, 23 Aug 2005) | 1 line

Junk was thrown away
--
r3 | foo | 2005-08-23 01:51:38 -0400 (Tue, 23 Aug 2005) | 1 line

Added a Circle Class
--
r2 | bar | 2005-08-23 01:47:23 -0400 (Tue, 23 Aug 2005) | 1 line

Added area() method to Square Class
--
r1 | foo | 2005-08-23 01:37:20 -0400 (Tue, 23 Aug 2005) | 2 lines

Import

svn diff [-r N[:M]] [TARGET[@REV]...]
svn diff [-r N[:M]] --old OLD-TGT[@OLDREV] [--new NEW-
TGT[@NEWREV]] [PATH...]
svn diff OLD-URL[@OLDREV] NEW-URL[@NEWREV]

Display the differences between two paths. The three different ways you can use
svn diff are:

svn diff [-r N[:M]] [--old OLD-TGT] [--new NEW-TGT] [PATH...] displays
the differences between OLD-TGT and NEW-TGT. If PATHs are given, they are treated as
relative to OLD-TGT and NEW-TGT and the output is restricted to differences in only
those paths. OLD-TGT and NEW-TGT may be working copy paths or URL[@REV]. OLD-TGT
defaults to the current working directory and NEW-TGT defaults to OLD-TGT. N defaults
to BASE or, if OLD-TGT is a URL, to HEAD. M defaults to the current working version or, if
NEW-TGT is a URL, to HEAD. svn diff -r N sets the revision of OLD-TGT to N, svn diff
-r N:M also sets the revision of NEW-TGT to M.

Developer Bar demonstrates some uses of diff...

Too much output to display here...

Developer Bar commits all changes.

air:~/demo bar$ svn commit -m "moved all to /lib"
Deleting circle.php
Adding lib
Adding lib/circle.php
Adding lib/rectangle.php
Adding lib/shape.php
Deleting rectangle.php
Deleting shape.php

Tools for Writing Better PHP Code: Version Control with Subversion

http://www.nyphp.org/content/presentations/svn/[9/12/2009 7:04:17 PM]

Committed revision 6.

Branching & Merging

svn copy SRC DST

Copy a file in a working copy or in the repository. SRC and DST can each be either a
working copy (WC) path or URL:

WC -> WC
Copy and schedule an item for addition (with history).

WC -> URL
Immediately commit a copy of WC to URL.

URL -> WC
Check out URL into WC, and schedule it for addition.

URL -> URL
Complete server-side copy. This is usually used to branch and tag.

Cheap copies

Subversion's repository has a special design. When you copy a directory, you don't
need to worry about the repository growing huge—Subversion doesn't actually
duplicate any data. Instead, it creates a new directory entry that points to an existing
tree. If you're a Unix user, this is the same concept as a hard-link. From there, the
copy is said to be "lazy". That is, if you commit a change to one file within the copied
directory, then only that file changes—the rest of the files continue to exist as links to
the original files in the original directory.

Developer Foo updates (reinforce good workflow), then copies and switches to an
"experimental" branch. Then does some refactoring by moving area() method up to
shape.php and commits the changes.

air:~/demo foo$ svn update
D circle.php
D rectangle.php
A lib
A lib/shape.php
A lib/circle.php
A lib/rectangle.php
D shape.php
Updated to revision 6.

Tools for Writing Better PHP Code: Version Control with Subversion

http://www.nyphp.org/content/presentations/svn/[9/12/2009 7:04:17 PM]

Developer Foo creates an "experimental" branch by copying the current main trunk.

air:~/demo foo$ svn copy -m 'branching' \
 http://svn.server.com/repo/demo \
 http://svn.server.com/repo/foo_branch
Committed revision 7.

Developer Foo checks out the newly created branch.

air:~/branch foo$ cd ..
air:~ foo$ svn co http://svn.server.com/repo/foo_branch
A foo_branch/lib
A foo_branch/lib/shape.php
A foo_branch/lib/circle.php
A foo_branch/lib/rectangle.php
Checked out revision 7.

Developer Foo does some refactoring by moving area() method up to shape.php and
commits the changes.

air:~ foo$ cd foo_branch/lib
air:~/foo_branch/lib foo$ vi shape.php
air:~/foo_branch/lib foo$ vi rectangle.php
air:~/foo_branch/lib foo$ vi circle.php
air:~/foo_branch/lib foo$ vi triangle.php
air:~/foo_branch/lib foo$ cat shape.php
<?php
class Shape {
 public $height ;
 public $width ;

 function area() {
 return $this->height * $this->width;
 }
}

air:~/foo_branch/lib foo$ cat rectangle.php
<?php
class Rectangle extends Shape {

}

air:~/foo_branch/lib foo$ cat circle.php
<?php
class Circle extends Shape {
 public $diameter ;

 function radius() {
 return $this->diameter / 2 ;
 }

 function area() {
 return pi()*pow($this->radius(),2);
 }
}

air:~/foo_branch/lib foo$ cat triangle.php
<?php
class Triangle extends Shape {
 function area() {
 return parent::area()/2 ;
 }
}

air:~/foo_branch/lib foo$ svn commit -m 'moved area up to Shape class'

Tools for Writing Better PHP Code: Version Control with Subversion

http://www.nyphp.org/content/presentations/svn/[9/12/2009 7:04:17 PM]

Sending lib/circle.php
Sending lib/rectangle.php
Sending lib/shape.php
Adding lib/triangle.php
Transmitting file data ...
Committed revision 8.

Developer Bar uses status to show no changes after commit to branch. Note the
revision number is higher, but no files change.

air:~/demo bar$ svn update
At revision 8.

svn merge sourceURL1[@N] sourceURL2[@M] [WCPATH]
svn merge sourceWCPATH1@N sourceWCPATH2@M [WCPATH]
svn merge -r N:M SOURCE[@REV] [WCPATH]

In the first form, the source URLs are specified at revisions N and M. These are the
two sources to be compared. The revisions default to HEAD if omitted.

In the second form, SOURCE can be a URL or working copy item, in which case the
corresponding URL is used. This URL, at revisions N and M, defines the two sources to
be compared.

WCPATH is the working copy path that will receive the changes. If WCPATH is omitted, a
default value of "." is assumed, unless the sources have identical basenames that
match a file within ".": in which case, the differences will be applied to that file.

Unlike svn diff, the merge command takes the ancestry of a file into consideration
when performing a merge operation. This is very important when you're merging
changes from one branch into another and you've renamed a file on one branch but
not the other.

Developer Foo merges changes from "experimental" to main trunk.

air:~/foo_branch/lib foo$ cd ../../demo/lib
air:~/demo foo$ svn merge --dry-run -r 6:HEAD
http://svn.server.com/repo/foo_branch
U lib/shape.php
U lib/circle.php
U lib/rectangle.php
A lib/triangle.php
air:~/demo foo$ svn status
air:~/demo foo$ svn merge -r 6:HEAD http://svn.server.com/repo/foo_branch
U lib/shape.php
U lib/circle.php
U lib/rectangle.php
A lib/triangle.php
air:~/demo foo$ svn status
M lib/shape.php
M lib/circle.php
M lib/rectangle.php
A lib/triangle.php

Tools for Writing Better PHP Code: Version Control with Subversion

http://www.nyphp.org/content/presentations/svn/[9/12/2009 7:04:17 PM]

air:~/demo foo$ svn commit -m 'mergeed experimental branch back'
Sending lib/circle.php
Sending lib/rectangle.php
Sending lib/shape.php
Adding lib/triangle.php
Transmitting file data ...
Committed revision 9.

Developer Bar updates.

air:~/demo bar$ svn update
U lib/shape.php
U lib/circle.php
U lib/rectangle.php
A lib/triangle.php
Updated to revision 9.

Since copies are cheap, it is easy to support multiple developers with multiple
branches, just merging into the main trunk whatever particluar revision you want.

Conflicts & Recovery
Developer Bar makes a change and commits.

air:~/demo/lib bar$ vi circle.php
air:~/demo/lib bar$ cat circle.php
<?php
class Circle extends Shape {
 public $diameter ;

 function radius() {
 return $this->diameter / 2 ;
 }

 function area() {
 return pi()*pow($this->radius(),2);
 }

 function circumference() {
 return pi() * $this->diameter ;
 }
}
air:~/demo/lib bar$ svn commit -m 'added circumference() to circle class'
Sending lib/circle.php
Transmitting file data ...
Committed revision 10.

Developer Foo neglects to update before making changes to the same file and
commits.

Tools for Writing Better PHP Code: Version Control with Subversion

http://www.nyphp.org/content/presentations/svn/[9/12/2009 7:04:17 PM]

air:~/demo/lib foo$ vi circle.php
air:~/demo/lib foo$ cat circle.php
<?php
class Circle extends Shape {
 public $diameter ;

 function radius() {
 return $this->diameter / 2 ;
 }

 function area() {
 return pi()*pow($this->radius(),2);
 }

 function circumference() {
 return $this->diameter * pi() ;
 }
}
air:~/demo foo$ svn commit -m 'added circumference() to circle class'
Sending lib/circle.php
Transmitting file data ...
Committed revision 11.

Merging Conflicts by Hand

svn resolved PATH...

Remove "conflicted" state on working copy files or directories. This routine does not
semantically resolve conflict markers; it merely removes conflict-related artifact files
and allows PATH to be committed again; that is, it tells Subversion that the conflicts
have been "resolved".

The strings of less-than signs, equal signs, and greater-than signs are conflict
markers, and are not part of the actual data in conflict. You generally want to ensure
that those are removed from the file before your next commit. The text between the
first two sets of markers is composed of the changes you made in the conflicting
area. The text between the second and third sets of conflict markers is the text from
the conflicting commit.

air:~/demo/lib bar$ cat circle.php
....
air:~/demo/lib bar$ svn resolved circle.php
air:~/demo/lib bar$ svn commit -m "Go ahead and use my cirle, discarding bar's
edits."

Copying a File Onto Your Working File

f you get a conflict and decide that you want to throw out your changes, you can
merely copy one of the temporary files created by Subversion over the file in your
working copy.

air:~/demo/lib bar$ svn update
C circle.php
Updated to revision 12.

Tools for Writing Better PHP Code: Version Control with Subversion

http://www.nyphp.org/content/presentations/svn/[9/12/2009 7:04:17 PM]

air:~/demo/lib bar$ ls circle.*
circle.php circle.php.mine circle.php.r10 circle.php.r11
air:~/demo/lib bar$ cp circle.php.r2 circle.php
air:~/demo/lib bar$ svn resolved circle.php

Punting: Using svn revert

svn revert PATH...

Reverts any local changes to a file or directory and resolves any conflicted states.
svn revert will not only revert the contents of an item in your working copy, but
also any property changes. Finally, you can use it to undo any scheduling operations
that you may have done (e.g. files scheduled for addition or deletion can be
"unscheduled").

If you get a conflict, and upon examination decide that you want to throw out your
changes and start your edits again, just revert your changes.

air:~/demo/lib bar$ svn revert circle.php
Reverted 'circle.php'
air:~/demo/lib bar$ ls circle.*
circle.php

Good Workflow

Update your working copy: svn update

Make changes: svn add|delete|copy|move

Examine Your changes: svn status|diff|revert

Merge others' changes: svn merge|resolved

Commit your changes: svn commit

Tools for Writing Better PHP Code: Version Control with Subversion

http://www.nyphp.org/content/presentations/svn/[9/12/2009 7:04:17 PM]

http://jigsaw.w3.org/css-validator/validator?uri=http://comprehensivity.com/vcp/
http://jigsaw.w3.org/css-validator/validator?uri=http://comprehensivity.com/vcp/
http://validator.w3.org/check?uri=referer

Tools for Writing Better PHP Code: Version Control with Subversion

http://www.nyphp.org/content/presentations/svn/[9/12/2009 7:04:17 PM]

Tools for Writing Better PHP Code: Version Control with Subversion

http://www.nyphp.org/content/presentations/svn/[9/12/2009 7:04:17 PM]

	nyphp.org
	Tools for Writing Better PHP Code: Version Control with Subversion

